The role of perceived L2 category in cross-language perception & implications for loanword adaptation

Yoonjung Kang & Jessamyn Schertz University of Toronto *Annual Meeting on Phonology* USC, October 21-23, 2016

- Phonological operation (Paradis and LaCharite, 1997)
- Perceptual operation (Silverman 1992, Peperkamp & Dupoux 2003, Boersma and Hamann 1998)
- Perceptually informed phonological operation (Steriade 2001, Kenstowicz 2001, Yun 2016)

• Phonological operation (Paradis and LaCharite, 1997)

- Phonological operation (Paradis and LaCharite, 1997)
 - Input: output of L2 phonology
 - Non-contrastive, gradient phonetic details of L2 are not relevant.

- Phonological operation (Paradis and LaCharite, 1997)
- Perceptual operation (Silverman 1992, Peperkamp & Dupoux 2003, Boersma and Hamann 2009)

- Phonological operation (Paradis and LaCharite, 1997)
- Perceptual operation (Silverman 1992, Peperkamp & Dupoux 2003, Boersma and Hamann 2009)
 - Input: unstructured acoustic signal of L2
 - Phonological structure of L2 is not relevant

- Phonological operation (Paradis and LaCharite, 1997)
- Perceptual operation (Silverman 1992, Peperkamp & Dupoux 2003, Boersma and Hamann 2009)
- Perceptually informed phonological operation (Steriade 2001, Kenstowicz 2001, Yun 2016)

- Phonological operation (Paradis and LaCharite, 1997)
- Perceptual operation (Silverman 1992, Peperkamp & Dupoux 2003, Boersma and Hamann 2009)
- Perceptually informed phonological operation (Steriade 2001, Kenstowicz 2001, Yun 2016)
 - Perceptually relevant phonetic details of L2 matter.

- Phonological operation (Paradis and LaCharite, 1997)
- Perceptual operation (Silverman 1992, Peperkamp & Dupoux 2003, Boersma and Hamann 2009)
- Perceptually informed phonological operation (Steriade 2001, Kenstowicz 2001, Yun 2016)

Duality of adaptation

- Adaptation is sensitive to non-contrastive phonetic details of L2 but also L2
 phonological structures are adapted more regularly than predicted by L1-driven perception alone.
- (cf. Peperkamp, et al. 2008, Kang 2010, deJong and Cho 2012)

Boersma & Hamann (2009)

COMPREHENSION

PRODUCTION

Fig. 1. A single model for L1 processing as well as loanword adaptation.

Goals

- Examine how similar L2L1 mapping is to L1 perception and if L2L1 mapping is modulated by L2 perception.
- Compare the mappings across the tasks (L1, L2, L2L1) by controlling for acoustic differences between L1 and L2, a departure from previous L2L1 mapping studies that used natural L2 stimuli.

Hypotheses

- Hypothesis 1: If listeners map foreign sounds directly onto L1 categories based on the relevant acoustic dimensions, results for the crosslanguage mapping task should be identical to the L1 mapping.
- Hypothesis 2: If listeners perceive foreign sounds in terms of L2 categories, results for the crosslanguage mapping task should diverge from the L1 mapping in the case of L1-L2 category mismatch.

English stops in Korean

Experiments

Experiment	Stimuli	Response
L1	Korean stops	Korean categories (바/빠/파)
L2	English stops	English categories (ba/pa)
L2L1	English stops	Korean categories (비/빠/파)

*Order of L1 and L2 varied across participants

Stimuli

- Nonce-word stimuli ('paru') produced by male native speakers of each language
- Manipulated to create a controlled acoustic space, identical for L1 and L2
 - VOT (0-120ms): 8 steps
 - f0 at V onset (83-120 Hz): 5 steps₁₁₀ $\times \times \times \times \times \times \times \times \times \times$
 - two base vowels
 - two repetitions
 - 4 tokens per "cell" per task

Participants

- 87 Seoul-Kyeongki Korean listeners
 - 22 recruited in Toronto (Year of Birth: 1987~95)
 - 65 recruited in Incheon (Year of Birth: 1933~96)
- 8 English controls with no knowledge of Korean

Response Coding

- Responses are coded into binary choice, mirroring the correspondences in loanwords.
 English Korean Coding
 - Voiceless (p)Aspirated (p^h)AspiratedVoiced (b)Lenis (p)/Fortis (p')Non-aspirated

Response Coding

 We then calculated the rate of "aspirated" choice (ASP.RATE) for each cell of the f0-by-VOT acoustic space for each task for each listener.

Response Coding

• We then calculated the rate of "aspirated" choice (ASP.RATE) for each cell of the f0-by-VOT acoustic space for each task for each listener.

All listeners combined

Individual variation

Comparing across experiments

• For each cell for each listener, the difference in response rate across experiments were calculated and averaged. (0: identical, 1: opposite)

Individual variation

Comparing across experiments

Summary

- For those listeners with asymmetries, responses in the cross-language mapping experiment were more similar to the L2 than the L1 experiment.
 - Paired t-test confirms /L2L1-L1/ > /L2L1-L2/

(t = 2.1509, df = 86, p = 0.03429).

- However, most listeners show very little difference across any of the experiments.
 - L2 perception (and L2L1 perception) is heavily influenced by L1 perception?

English control

L2 perception proficiency as predictor

 For each listener, we also calculated the difference between ASP.RATE in the L2 experiment and the average ASP.RATE of the English control listeners. / Control-L2/

L2 perception proficiency as predictor

 We examined how well listeners' L2 perception proficiency predicts the degree of relative influence of L2 perception vs. L1 perception on L2L1 mapping (/L2L1-L1/ - /L2L1-L2/)

L2 perception proficiency as predictor

Conclusion

- Our experiments controlled L1 and L2 stimuli for their acoustic properties to provide a stronger test of (in)congruence across mapping tasks.
- For most listeners, there is very little difference across the three perception tasks.
 - L1 perception heavily influences L2 and L2L1 perception.

Conclusion

- For those listeners for whom L1 and L2 perception diverges enough (high L2 proficiency), we can observe the L2 influence on L2L1 perception independent of L1 influence.
- This result is in line with recent studies that show that cross-language perception patterns can differ by the listeners' level of L2 exposure (Kwon in press, Nomura & Ishikawa 2016)

Conclusion

- The current study presents a potential perceptual solution to the duality problem.
 - The phonological structure of L2 can play a role even when the mechanism of loanword adaptation is perceptual.

Acknowledgements

- Data collection: Prof. Sungwoo Han at Inha University, Yunyan Luo, and Yuanyang Song
- Stimulus preparation: Young-June Kim, Dan Milway and Derek Denis for recording stimuli.
- U of T Phonology-Phonetics group members for comments & discussion
- Funding: SSHRC #435-2013-2092